Dynamic Difficulty Adjustment for a Novel Board Game

Presented by: Pier P. Guillen

EE 570 – Artificial Intelligence

December 7th, 2010

Introduction

- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

Introduction

- Programs can now beat competent players, grandmasters or even solve games.
- Some games are still elusive.
- The field is looking for new challenges.
- Personal goal: design a novel game and implement the AI.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

- By Susan L. Epstein, The City University of New York, 1999.
- Overview:
 - Defines important concepts in game solving.
 - Reviews the state of AI in board games at the time.
 - Proposes three challenges.

- Reasons to continue to do research:
 - Humans have fascination towards games.
 - Some games can provide insight on what current approaches lack.

- What is a game?
 - Multi-agent, noise-free, discrete space with a finite set of pieces and set of rules.

• Concepts:

- Position, goal, game tree, contest, optimal move, evaluation function (perfect, heuristic), minimax algorithm, reducing search, introducing knowledge.
- Games and strategies:
 - Checkers (Chinook) and Chess (Deep Blue): brute force, enormous subtrees, extensive opening and closing books, evaluation functions carefully tuned.

- Games and strategies (cont.):
 - Backgammon (Logistello), Othello (TD-gammon) and Scrabble (Maven): powerful evaluation functions, trained offline from millions of played games.
 - Current targets:
 - Bridge and Poker: imperfect information.
 - Shogi and Go: branching factor is too big.

- Possible approaches:
 - Spatial cognition: value features by visualizing.
 - Satisfice: good enough decisions, reason from incomplete or inconsistent information, learn from mistakes.
- Challenges:
 - Model a contestant .
 - Annotate a contest.
 - Expert program teaching its skill.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

- By Cameron Browne, Imperial College London, and Frederic Maire, Queensland University of Technology, 2010.
- Overview:
 - How to create combinatorial games by automatic means.
 - Provides empiric measurements of quality.
 - Uses an evolutionary search to produce new highquality games.

- Little attention paid to measure the quality of games themselves.
- Ludi Framework:
 - Uses a Game Description Language (GDL) to define games.
 - General Games Players (GGP) to interpret games and coordinates moves.
 - 3 modules: strategy module (planning), criticism module (quality), synthesis (generate new games).

- How to rate games:
 - Use 3 aesthetic criteria.
 - Intrinsic (based on rules).
 - Viability (based on outcomes).
 - Quality (based on trend of play).
 - 57 of these criteria
 - Examples: completition, duration, drama and uncertainty.

- Mating other games.
- Two parents, one is a template.
- Mutate child.
- Perform validity check.
- Score game.
- Insert into population.

PURDUE UNIVERSITY.

- Experiments and results:
 - 79 existing games evaluated and ranked.
 - Results were correlated with aesthetic measurement .
 - 1389 games evolved from the original set, 19 deemed viable.
 - New games were scored and correlated.
 - Top 2 games are now commercially available.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "AI for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

- By Robin Hunicke and Vernell Chapman, Northwestern University, 2004.
- Overview:
 - Games are meant to be engaging.
 - Use probabilistic methods to adjust challenge onthe-fly.
 - Creates more flexible and enjoyable experiences.

- Approach: maintain the player on the "flow" channel.
- Use Dynamic Difficulty Adjustment (DDA).

- Implementation:
 - Hamlet system.
 - Runs on Half-Life engine.
 - Metric chosen: damage.
- Types of adjustments:
 - Reactive (interacting elements).
 - Active (off-stage elements).

- Policies regulate the supply and demand of inventory.
- Abstract simulations estimate outcome.
- Changes are made based on this.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

Game Rules

- Game: Tlamatini.
- Elements:
 - Turned based board game.
 - Two players.
 - Hexagonal board, with hexagonal tiling.
 - 4 pieces per player, 3 types of pieces.
 - 3 tile states: neutral, owned or owned by rival.
- Goal: Make a specific piece reach the other side.

Game Rules

PURDUE UNIVERSITY.

Game Rules

PURDUE UNIVERSITY.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

Program

- Implemented in:
 - Adobe Flash CS5.
 - ActionScript 3.
- Benefits:
 - Rapid prototyping.
 - Easy integration of multimedia elements.
 - Platform independent.
 - Playable online.

Program

- Al approaches:
 - General Game Playing (GGP).
 - Minimaxing game tree.
- Tree searching:
 - Alpha-beta algorithm (negamax framework, failsoft approach).
 - Two functions; one for root.
- Static evaluator: considers amount of tiles and proximity of king.

Program

- Iterative deepening: start at depth 1 and increase while times allows.
- Dynamic difficulty:
 - Limit amount of computation (depth searched).
 - Policy approach: calculate the probability of player winning, act accordingly.
- Implemented policy:
 - Threshold value on when to help.
 - Counter value to not help too often.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

Experimental results

- Search results:
 - Game has a branching factor of 20-30.
 - Program search up to 4 plies.
 - Flash has a 15 s. execution limit.
- Gameplay results:
 - Presented to half a dozen players.
 - Good concept.
 - Too easy to beat.

Experimental results

- Actionscript limitations:
 - AS3 has speedups of 10x over AS2.
 - Is still 5-10 times lower than java; 100-500 than C.
- Other people results:
 - flashCHESSIII.
 - Alpha evaluated 1000 nodes per move. Final version +10000 (~4 plies).
 - The Elo rating of the engine at around 1500-1800.

- Introduction
- 1st Paper: "Game Playing: The Next Moves"
- 2nd Paper: "Evolutionary Game Design"
- 3rd Paper: "Al for Dynamic Difficulty Adjustment in Games"
- Implementation: game rules
- Implementation: program
- Implementation: experimental results
- Conclusions and future work

Conclusions

- Many open options of development of AI on board games.
- Not possible to evaluate the implemented policy effectiveness.
- Speed-up opportunities:
 - Refactor and decouple.
 - Profiler based optimizations.
 - Fine-tune evaluation function.

Conclusions

- Speed-up opportunities (cont.):
 - Implement other common tree searching techniques:
 - Transposition tables.
 - Null move forward pruning.
 - MTD(f) search or negascout.
 - Opening and closing books.

Questions? (Thank you!)